×

Вы используете устаревший браузер Internet Explorer. Некоторые функции сайта им не поддерживаются.

Рекомендуем установить один из следующих браузеров: Firefox, Opera или Chrome.

Контактная информация

+7-863-218-40-00 доб.200-80
ivdon3@bk.ru

  • Интеллектуальная система распознавания хищников в Уганде, основанная на зрении: подход к глубокому обучению для анализа изображений фотоловушек

    • Аннотация
    • pdf

    В этом исследовании представлен эффективный метод, основанный на зрении, для точной идентификации видов хищников по изображениям с камер-ловушек в охраняемых районах Уганды. Для решения проблем обнаружения объектов в естественной среде мы предлагаем новую многофазную архитектуру глубокого обучения, которая сочетает в себе извлечение различных признаков с концентрированным обнаружением краев. По сравнению с предыдущими подходами, наш метод обеспечивает точность классификации на 90,9%, что значительно сокращает количество обучающих рекламных выборок, выполняемых вручную. Фоновые пиксели были систематически отфильтрованы для улучшения работы модели в различных условиях окружающей среды. Эта работа является достижением как в области биологии, так и в области компьютерного зрения, демонстрируя эффективный и ориентированный на данные подход к автоматизированному мониторингу дикой природы, который поддерживает научно обоснованные меры по сохранению.

    Ключевые слова: глубокое обучение, фотоловушка, сверточная нейронная сеть, набор данных, хищник, национальный парк Кидепо, дикая природа

    2.3.1 - Системный анализ, управление и обработка информации

  • Усовершенствованные структуры сверточных нейронных сетей для надежной многоугольной аутентификации по лицу: внедрение и сравнительная оценка

    • Аннотация
    • pdf

    В этой статье представлена техническая реализация сверточной цифровой сетевой системы распознавания лиц, которая способна работать в различных сценариях, таких как перекрытие, изменение угла обзора и поворот камеры. были проанализированы различные алгоритмы идентификации лиц с целью разработки модели, которая могла бы идентифицировать лица под разными углами. Система была экспериментально проверена на различных наборах данных и сравнена с ее точностью, скоростью обработки и устойчивостью к воздействию окружающей среды. Результаты показывают, что оптимизированная структура нашей сверточной нейронной сети обеспечивает точность более 90% в нормальных условиях и сохраняет достойную производительность при частичной окклюзии.

    Ключевые слова: распознавание лиц, сверточные нейронные сети, модель, извлечение признаков, глубокое обучение, распознавание лиц, изображение

    2.3.1 - Системный анализ, управление и обработка информации

  • Выявление скрытых закономерностей при классификации изображений дикой природы с использованием сверточных нейронных сетей для идентификации видов в природоохранных целях

    • Аннотация
    • pdf

    Это исследование является свидетельством потенциала сверточных нейронных сетей при активации softmax для классификации образцов богомола, медоеда и ласки. Модель была способна давать точные прогнозы с низким уровнем ошибок в классификации и обладала потенциалом для уменьшения различий в окружающей среде за счет минимизации их с помощью увеличения объема данных. Исследование показывает, как сети глубокого обучения можно было бы использовать для автоматизации таксономической классификации, что, в свою очередь, помогло бы идентифицировать виды с помощью изображений и крупномасштабного природоохранного мониторинга.

    Ключевые слова: глубокое обучение, машинное обучение, сверточные нейронные сети, набор данных, функция softmax, классификация изображений, дикая природа, расширение данных

    2.3.1 - Системный анализ, управление и обработка информации