×

Вы используете устаревший браузер Internet Explorer. Некоторые функции сайта им не поддерживаются.

Рекомендуем установить один из следующих браузеров: Firefox, Opera или Chrome.

Контактная информация

+7-863-218-40-00 доб.200-80
ivdon3@bk.ru

  • Алгоритм формирования стратегии автоматического обновления моделей искусственного интеллекта в задачах прогнозирования в электроэнергетике

    • Аннотация
    • pdf

    Изменение внешних условий, параметров функционирования объектов, взаимосвязей между элементами системы и связей системы с надсистемой приводит к снижению точности результатов моделей искусственного интеллекта, которое называется деградацией моделей. Снижение риска деградации моделей актуально для задач электроэнергетики, особенностью которых является многофакторные зависимости в сложных технических системах и влияние метеорологических параметров. Автоматическое обновление моделей с течением времени является необходимым условием формирования доверия пользователей к интеллектуальным системам прогнозирования. В данной статье представлена классификация видов дрейфа данных. Формализованы варианты решений, которые разработчикам необходимо принять при создании интеллектуальных систем для определения стратегии обновления прогнозных моделей, включая критерии запуска обновления, выбор моделей, оптимизацию гиперпараметров, выбор способа обновления и формирования наборов данных. Предложен алгоритм формирования стратегии автоматического обновления моделей искусственного интеллекта и даны практические рекомендации для разработчиков моделей в задачах прогнозирования временных рядов в электроэнергетике.

    Ключевые слова: прогнозирование временных рядов, искусственный интеллект, машинное обучение, доверенная система искусственного интеллекта, деградация моделей, дрейф данных, дрейф концепции

    1.2.2 - Математическое моделирование, численные методы и комплексы программ , 2.3.1 - Системный анализ, управление и обработка информации

  • Анализ структуры и качества данных солнечной радиации из реанализа ERA5 для краткосрочного прогнозирования в условиях Крайнего Севера

    • Аннотация
    • pdf

    В статье рассматривается оценка пригодности данных солнечной радиации из атмосферного реанализа ERA5 для задач прогнозирования в условиях северных территорий. В качестве объекта анализа выбрана экспериментальная площадка станции Мухрино (Ханты-Мансийский автономный округ), оснащённая автономной системой электроснабжения. Проведён статистический анализ годового массива данных глобальной горизонтальной инсоляции, полученных с помощью платформы PVGIS. Рассмотрены сезонные и суточные особенности изменения инсоляции, построены профили распределения, выполнена оценка выбросов методом межквартильного размаха. Установлено, что данные характеризуются высокой изменчивостью и наличием большого количества нулевых значений, обусловленных полярными ночами и метеоусловиями. Выявленные особенности необходимо учитывать при построении моделей краткосрочного прогнозирования. Сделан вывод о приемлемом качестве данных ERA5 для использования в задачах прогноза генерации и потребления энергии в системах распределённого энергоснабжения.

    Ключевые слова: ERA5, солнечная радиация, горизонтальная инсоляция, Крайний Север, статистический анализ, прогнозирование, анализ выбросов, возобновляемые источники энергии, энергоснабжение удаленных территорий, временные ряды, интеллектуальное управление генерацией

    2.3.1 - Системный анализ, управление и обработка информации , 2.3.3 - Автоматизация и управление технологическими процессами и производствами